
AP Computer Science Principles Scope & Sequence

Days Unit Standard(s)/Outcome(s) Essential/Guiding Questions

12 1 – Introduction to
Programming

1. Students develop an interactive
game they can install on their
phones, generate conversation
between animated characters,
create abstract art, and explore
storytelling animation through
sprite interaction.

2. Learn to use pair programming
and to create program
documentation.

3. Investigate legal and ethical
issues that arise in computing,
especially with regard to data
collection and privacy.

How can events be used in
programming?

In what ways can multiple
programmers improve a
program?

How can society balance
informational needs and privacy
protections?

11 2 - Abstraction 1. Students implement an
algorithm for a guessing game
using local and global variables.

2. Use abstract data types and list
traversal to build a quiz app.

3. Create predicates to filter lists
in order to solve a crossword
puzzle.

4. Use the modulus function and

How can variables be used to
improve the function of a
program?

Why are abstract data types
necessary in programming?

In what ways are mathematical
functions critical to

a higher order function to code
mathematical functions

5. Investigate the history, purpose,
laws,evolution and
enforcement of copyright.

programming?

What impact has the computer
had on copyright laws?

7 3 – Data Structures 1. Students explain complexity in
a variety of contexts (maze
navigation, fractal art, tic-tac-
toe).

2. Use nested abstract data types
and data I/O to develop a
contact list app.

3. Evaluate the beneficial and
harmful impacts of robots and
AI.

How can recursion be used to
simplify and improve
programming?

How does an abstract data type
in conjunction with constructors
manage complexity in
programming?

Do the benefits of advanced
technologies outweigh their
potential dangers?

5 Practice AP Create
task

1. Students create a project of
their own choosing as practice
for the AP Create Task.

2. Select and use a development
process

3. Plan and code their own
program.

4. Test their program for errors.
5. Write about the development

process.

How can you apply and
showcase your knowledge of
programming?

6. Acknowledge any code
developed by other people.

10 4 – How the Internet
works

1. Students learn about how the
internet works.

2. The benefits and vulnerabilities
of fault-tolerant systems.

3. Cybersecurity practices such as
public key encryption and
individual level practices and
software to keep safe.

4. Digital data representation
including binary
representation.

5. Compression algorithms.
6. Consider the impact of the

internet on human
communication and the
workplace.

How do networks operate?

What elements make up
Cybersecurity?

How is information stored and
used in a computer system?

How does collaboration through
the internet affect communities?

What are the social implications
of online interactions?

10 5 – Algorithms and
Simulations

1. Students learn about program
efficiency through exploration
of the binary and linear search
algorithms.

2. Learn about sequential,
parallel, and distributed
computing and determine the
contexts in which each is most
useful.

3. Consider the contexts in which
simulation is useful and
implement a simple solution.

How do computers organize and
search through information?

How do programs do multiple
things at the same time?

How do computers do problem
solving?

How do computers process data?

4. Use Snap! Data tools to
generate knowledge from data.

9 AP Create Task 1. Students complete the AP
Create task, 12 hours in class.

How can you apply and
showcase your knowledge of
programming?

4 6 - How Computers
Work

1. Building on their
understanding of abstraction
and the way computers store
data, students learn about the
computer system abstraction
hierarchy, with application
software on top and transistors
at the bottom.

3 7 - Fractals and
Recursion

1. Students expand their
experience with recursion and
functional programming
through drawing projects that
use recursive commands,
mainly fractals

5 8 - Recursive
Functions

1. Students extend their
understanding of abstraction
and recursion through

exploration of recursive
functions: sorting lists; both
selection sort and partition sort;
Pascal’s triangle; converting
numbers to and from binary;
finding the subset of a set; and
building several higher order
functions from scratch.

