AP Chemistry Scope & Sequence

Days	Unit	Standard(s)/Outcome(s)	Essential/Guiding Questions
7	Unit 1: Atomic Structure and Properties You'll learn about the composition of atoms and ways scientists measure and categorize these molecular building blocks.	BIG IDEAS: Scale, Proportion, and Quantity Structure and Properties SCIENCE PRACTICES: Models and Representations Question and Method Model Analysis Mathematical Routines	Why are eggs sold as a dozen? How can the same element be used in nuclear fuel rods and fake diamonds?
9	Unit 2: Molecular and Ionic Compound Structures and Properties You'll discover the range of chemical bonds and how their structure can affect the properties of the molecules created.	BIG IDEAS: • Structure and Properties SCIENCE PRACTICES: • Representing Data and Phenomena • Model Analysis • Argumentation	How has the discovery of DNA changed the world? How are molecular compounds arranged?
11	Unit 3: Intermolecular Forces and Properties You'll explore how atoms come together to create solids, liquids, and gases, and how	BIG IDEAS: • Scale, Proportion, and Quantity • Structure and Properties SCIENCE PRACTICES:	How do interactions between particles influence mixtures? Why does the smell of

	subatomic forces govern the properties of everything around you.	 Question and Method Representing Data and Phenomena Model Analysis Mathematical Routines Argumentation 	perfume only last a short time? Why can you swim in water but you cannot walk through a wall? How are the properties of gases described? How can you determine the structure and concentration of a chemical species in a mixture?
11	Unit 4: Chemical Reactions You'll learn how to differentiate physical and chemical processes, and how to measure and express chemical reactions via chemical equations.	BIG IDEAS: Scale, Proportion, and Quantity Transformations SCIENCE PRACTICES: Models and Representations Question and Method Representing Data and Phenomena Mathematical Routines Argumentation	What makes fireworks explode? Why is the mass of a raw egg different than a boiled egg? What are the processes related to changes in a substance?
10	Unit 5: Kinetics You'll explore various methods to observe the changes that occur during a chemical	BIG IDEAS: • Transformations • Energy SCIENCE PRACTICES:	Why are some reactions faster than other reactions? How long will a marble

	reaction and the effects of a series of reactions.	 Models and Representations Representing Data and Phenomena Mathematical Routines Argumentation 	statue last? How can a sports drink cure a headache? Why does bread rise?
7	Unit 6: Thermodynamics You'll learn about energy changes in chemical reactions and how a transfer of energy can change a substance's physical qualities.	BIG IDEAS: • Energy SCIENCE PRACTICES: • Models and Representations • Question and Method • Representing Data and Phenomena • Model Analysis • Mathematical Routines • Argumentation	Why is energy released when water becomes an ice cube? How are chemical transformations that require bonds to break and form influenced by energy?
11	Unit 7: Equilibrium You'll chart how chemical reactions change over time, what causes substances to reach equilibrium, and how systems react when that equilibrium is disturbed.	BIG IDEAS: • Transformations SCIENCE PRACTICES: • Question and Method • Representing Data and Phenomena • Model Analysis • Mathematical Routines • Argumentation	Why is a waterfall considered a spontaneous reaction? How can reactions occur in more than one direction? How is caffeine removed from coffee? Why is food stored in a refrigerator?

11	Unit 8: Acids and Bases You'll learn more about pH, the qualities and properties of acids and bases, and how they interact in chemical reactions.	BIG IDEAS: • Structure and Properties SCIENCE PRACTICES: • Question and Method • Mathematical Routines • Argumentation	How are reactions involving acids and bases related to pH? How does your body maintain pH balance?
7	Unit 9: Applications of Thermodynamics You'll be introduced to the concept of "thermodynamic favorability" for reactions, meaning how likely they are to occur given energy changes and environmental factors.	BIG IDEAS: • Scale, Proportion, and Quantity • Structure and Properties • Energy SCIENCE PRACTICES: • Question and Method • Model Analysis • Mathematical Routines • Argumentation	How does water flow uphill? How is the favorability of a chemical or physical transformation determined? How is electrical energy generated using chemical reactions?