5th Grade Mathematics Scope & Sequence | Unit | Standard(s)/Outcome(s)/Topic(s) | Essential/Guiding Questions | |--------------------------------|--|--| | Unit 1:
Geometry
(Sept.) | 5.G.1: Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., x-axis and x-coordinate, y-axis and y-coordinate). 5.G.2: Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. 5.G.3: Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles. 5.G.4 Classify two-dimensional figures in a hierarchy based on properties. | How can plane figures be categorized and classified? What is a quadrilateral? What are the properties of quadrilaterals? How can you classify different types of quadrilaterals? How are quadrilaterals alike and different? How can angle and side measures help us to create and classify triangles? Why are some quadrilaterals classified as parallelograms? Why is a square always a rectangle? What are ways to classify triangles? Where is geometry found in your | | Unit | Standard(s)/Outcome(s)/Topic(s) | everyday world? • How does the coordinate system work? • How do coordinate grids help you organize information? Essential/Guiding Questions | |---|---|--| | Unit 2: Place Value, Addition and Subtraction of Decimals and Measurement Conversions (Sept./Oct) | 5.MD.1: Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems. 5.NBT.1: Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left. 5.NBT.2: Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. 5.NBT.3: Read, write, and compare decimals to thousandths. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., 347.392 = 3 × 100 + 4 × 10 + 7 × 1 + 3 × (1/10) + 9 × (1/100) + 2 × (1/1000). Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and | How do the digits in each place value column relate to the digits in the column to the right and to the left? How can understanding place value help to convert in the metric system? What strategies can we use to compare decimals? How is adding and subtracting with decimals the same as computing with whole numbers and fractions? | | | < symbols to record the results of comparisons. 5.NBT.4: Use place value understanding to round decimals to any place. 5.NBT.7: Add and subtract decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. 5.0A.1: Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. *The expressions will include the use of parentheses and brackets, but will not contain braces at grade 5. Expressions have depth no greater than two, e.g., 3×[5 + (8 ÷ 2)] is acceptable but 3×[5 + (8 ÷ {4-2})] is not. | | |--|--|---| | Unit | Standard(s)/0utcome(s)/Topic(s) | Essential/Guiding Questions | | Unit 3:
Whole Number
Multiplication and
Volume (Nov.) | 5.MD.3: Recognize volume as an attribute of solid figures and understand concepts of volume measurement. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units. 5.MD.4 Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units. 5.MD.5: Relate volume to the operations of | How can volume be counted? What is volume? What is the most efficient method for calculating multi-digit whole numbers? How can we multiply large numbers? What are effective methods for finding volume of a | | | multiplication and addition and solve real world and mathematical problems involving volume. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication. Apply the formulas V = I × w × h and V = b × h for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world problems. 5.NBT.5: Fluently multiply multi-digit whole numbers using the standard algorithm. (2-digit by 3-digit) | rectangular prism? Does volume change when we change the measurement materials used? How are volume and area related? | |---|---|---| | Unit | Standard(s)/Outcome(s)/Topic(s) | Essential/Guiding Questions | | Unit 4:
Division of Whole
Numbers and | 5.MD.1: Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use | How can estimating
help us when solving
division problems? | | Measurement
(Dec./Jan.) | these conversions in solving multi-step, real world problems. 5.NBT.6: Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. | What strategies can we use to efficiently solve division problems? How can I effectively explain my mathematical thinking and reasoning to others? How can I effectively critique the reasoning of others? How can identifying patterns help determine multiple solutions? | |---|---|---| | Unit | Standard(s)/Outcome(s)/Topic(s) | Essential/Guiding Questions | | Unit 5:
Addition and
Subtraction of
Fractions (Jan.) | 5. NF.1: Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2/3+5/4=8/12+15/12=23/12$. (In general, $a/b+c/d=ad+bc/bd$.) 5.NF.2: Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate | How can models be used to compute fractions with like and unlike denominators? Why do we need common denominators to add or subtract fractions? How do I explain how changing the size of the whole affects the size or amount of a fraction? | | | mentally and assess the reasonableness of answers. For example, recognize an incorrect result 2/5+1/2 = 3/7, by observing that 3/7 < 1/2. 5.MD .2: Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally. | When is estimation of fractions useful? How do operations with fractions compare/relate to operations with whole numbers and decimals? | |---|---|--| | Unit | Standard(s)/Outcome(s)/Topic(s) | Essential/Guiding Questions | | Unit 6:
Multiplying and
Dividing Fractions
(Feb./Mar.) | 5.NF.3: Interpret a fraction as division of the numerator by the denominator (a/b = a ÷ b). Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. 5.NF.4: Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. 5.NF.4a: Interpret the product (a/b) × q as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations a × q ÷ b. For example, use a visual fraction model to show (2/3) × 4 = 8/3, and create a story context for this equation. Do the same with (2/3) × (4/5) = 8/15. (In | When is estimation of fractions useful? How is multiplying or dividing whole numbers similar to multiplying or dividing fractions? How can multiplying fractions be modeled using area, a number line, or measurement models? How can dividing fractions be modeled using area, sets, or a number line? | general, $(a/b) \times (c/d) = ac/bd$.) **5.NF.4b:**. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas. **5.NF.5:** Interpret multiplication as scaling (resizing), by: a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a/b = (n \cdot a)/(n \cdot b)$ to the effect of multiplying a/b by 1. **5.NF.6:** Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem. **5.NF.7:** Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions **5.NF.7.a:** Interpret division of a unit fraction by a non-zero whole number, and compute such quotients. For example, create a story context for $(1/3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1/3) \div 4 = 1/12$ because $(1/12) \times 4 = 1/3$. **5.NF.7.b:** Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context for $4 \div (1/5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div (1/5) = 20$ because $20 \times (1/5) = 4$. 5.NF.7.c: Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins? 5.MD .2: Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally. | Unit | Standard(s)/Outcome(s)/Topic(s) | Essential/Guiding Questions | |--|--|--| | Unit 7: Multiplication and Division of Decimals/ Rounding Decimals (Mar./Apr.) | 5.NBT.7: Multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations; relate the strategy to a written method and explain the reasoning used. | How do the digits in each place value column relate to the digits in the column to the right and to the left? What strategies can we use to compare decimals? How is multiplying, and dividing with decimals the same as computing with whole numbers and fractions? | | Unit | Standard(s)/0utcome(s)/Topic(s) | Essential/Guiding Questions | | Unit 8:
Algebraic Thinking
and Coordinate
Planes (Apr./May) | 5.0A.2: Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as 2 × (8 + 7). Recognize that 3 × (18932 + 921) is three times as large as 18932 + 921, without having to calculate the indicated sum or product. 5.0A.3: Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a | What relationships can be determined by analyzing two sets of given rules? How might a coordinate grid help me understand a relationship between two numbers? How can we represent numerical patterns on a coordinate grid? | coordinate plane. For example, given the rule "Add 3" and the starting number 0, and given the rule "Add 6" and the starting number 0, generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so. 5.G.2: Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation. - How can a line graph help us determine relationships between two numerical patterns? - How can the coordinate system help you better understand other map systems? - How can I write an expression that demonstrates a situation or context? - How can an expression be written given a set value? - What is the difference between an equation and an expression?