7th Grade Academic Scope \& Sequence

Days May Vary	Unit	Standard(s)/Outcome(s)	Essential/Guiding Questions
14-16	Unit 1: Integers	- 7.NS.A.1c Understand subtraction of rational numbers as adding the additive inverse, $p-q=p+(-q)$. Show that the distance between two rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. - 7.NS.1d. Apply properties of operations as strategies to add and subtract rational numbers. - 7.NS.2a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1)=1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. - 7.NS.2c. Apply properties of operations as strategies to multiply and divide rational	- How are addition and subtraction related to each other as applied to positive and negative numbers? (Subtracting is the same as adding the opposite) - Can you reverse the order of integers when performing any operation and still get the same answer? - Can you represent addition and subtraction of integers concretely? - Can you relate multiplication and division of integers?

		- 7.NS. 3 Solve real-world and mathematical problems involving the four operations with rational numbers.	
19-21	Unit 3: Ratios and Proportional Relationships	7. RP.1: Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured in like and or different units.. For example, if a person walks mile in each hour, compute the unit rate as the complex fraction miles per hour, equivalently 2 miles per hour. - 7.RP.2a. Recognize and represent proportional relationships between quantities. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin. - 7.RP.2b. Identify the constant of proportionality (unit rate) in	- What is the difference between rate and unit rate? - What is the constant of proportionality in a table, graph, or equation? - How is a proportional relationship represented on a coordinate plane? - How can you use proportional reasoning to find missing lengths in a scale drawing?

		tables, graphs, equations, diagrams and verbal descriptions of proportional relationships. - 7.RP.2c. Represent proportional relationships by equations. For example, if total cost t is proportional to the number of n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as $t=p n$. - 7.RP.2d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points $(0, O)$ and $(1, r)$ where r is the unit rate - 7.RP.3: Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error. - 7.G.1: Solve problems involving scale drawings of geometric figures, including computing	

		actual lengths and areas from a scale drawing and reproducing a scale drawing at a different scale.	
16-18	Unit 4: Percentage Problems	- 7.EE.2: Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, $a+0.05 a=1.05 a$ means that "increase by 5\%" is the same as "multiply by 1.05." - 7.EE.3: Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically; apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation strategies. - 7.RP.3: Use proportional relationships to solve multistep	- How are proportions used to solve percent problems? - What methods of computation can you use to answer percent problems? - What is the meaning of an answer in the context of the problem?

		ratio and percent problems. Examples: simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.	
30-33	Unit 5: Expressions and Equations	- 7.EE.1: Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients. - 7.EE.2: Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how the quantities in it are related. For example, $a+0.05 a=1.05 a$ means that "increase by 5\%" is the same as "multiply by 1.05." - 7.EE.B3: Solve multi-step real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply properties of operations to calculate with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using mental computation and estimation	- How do you translate a real-life word problem to an algebraic expression, equation, and inequality? - How are solving equations and inequalities similar or different? - How can you use inverse operations to solve an equation?

וו-9	Unit 6: Geometric Figures	- 7.G.2: Draw (freehand, with ruler and protractor, and with technology) geometric shapes with given conditions. Focus on constructing (drawing?) triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle. - 7.G.5: Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step problem to write and solve simple equations for an unknown angle in a figure.	- How do angles relate to the polygons they create? - How can I use angle relationships to solve for an unknown or a missing angle measurement?
$\begin{aligned} & 22- \\ & 24 \\ & \hline \end{aligned}$	Unit 7: Measurement	- 7.G.3: Describe the twodimensional figures that result from slicing three-dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids. - 7.G.4: Know the formulas for the area and circumference of a circle and use them to solve problems; give an informal derivation of the relationship between the circumference	- What techniques and tools are appropriate for determining measurements of 2 or 3 dimensional objects? - What is the relationship between the area of a circle and its circumference?

		and area of a circle. 7.G.6: Solve real-world and mathematical problems involving area, volume and surface area of two- and threedimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.	
16-18	Unit 8: Statistics	- 7.SP.1: Understand that statistics can be used to gain information about a population by examining a sample of the population; generalizations about a population from a sample are valid only if the sample is representative of that population. Understand that random sampling tends to produce representative samples and support valid inferences. - 7.SP.2: Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or	- What makes a sample a good representation of a population? - How do we know a generalization or inference about a population is "valid"? - What makes two numerical data distributions similar or different? - How are measures of center, deviation and variability used to compare two sets of data?

		predictions. For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be. - 7.SP.3: Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring the difference between the centers by expressing it as a multiple of a measure of variability. For example, mean height of players on the basketball team is. 10 cm greater than mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a dot plot, the separation between the two distributions of heights is noticeable - 7.SP.4: Use measures of center and measures of variability for numerical data from random samples to draw informal	

		comparative inferences about two populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer than the words in a chapter of a fourth-grade science book.	
14-16	Unit 9: Probability	- 7.SP.5: Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around $1 / 2$ indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event. - 7.SP.6: Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency, and predict the approximate relative frequency given the probability. For example, when rolling a number cube 600	- How are probabilities expressed? - What is the difference between experimental and theoretical probability? - What are ways to represent the number of outcomes? - How can probability be used to determine the likelihood of future events? - What type of model can be used to represent a real life situation involving probability?

		times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times. - 7.SP.7: Develop a probability model and use it to find probabilities of events; compare probabilities from a model to observed frequencies; and if the agreement is not good, explain possible sources of the discrepancy. - 7.SP.8: Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. 8a. Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.	

