Probability and Statistics Scope & Sequence

Days May Vary	Unit	Outcomes	Essential/Guiding Questions
14-16	Unit 1: Foundations of Statistics	 Identify variables in a statistical study. Distinguish between quantitative and qualitative variables. Identify populations and studies. Distinguish between parameters and statistics. Compare descriptive and inferential statistics Explain the importance of random samples as you design your own. 	 What is the nature of data and why are statistics important? What are the different sampling techniques? How can you design ways to collect data?
11-13	Unit 2: Correlation and Regression	 Create a scatter diagram and estimate the location of the "best-fitting" line for a scatter diagram. Use sample data to to compute 	 How can you use a scatter diagram to visually estimate the degree of linear correlation of two random variables?

		 the sample correlation coefficient <i>t</i>, and investigate the meaning of it. Explain the difference between interpolation and extrapolation. Explain why the extrapolation beyond the sample data range might give results that are misleading or meaningless. Use r² to determine explained and unexplained variation of the response variable <i>y</i>. 	 How do you compute the correlation coefficient and what does it tell you about the strength of the linear relationship between two random variables? What is the least-squares criterion and how do you find the equation of the least-squares line? What is the coefficient of determination, and what does it tell you about the explained variation of <i>y</i> in a random sample of data pairs (<i>x,y</i>)?
10-12	Unit 3: Elementary Probability Theory	 Assign probabilities to big events and explain how the law of large numbers relates to relative frequencies. Apply the basic rules of probability to everyday life. Explain the relationship between probability and statistics. Compute probabilities of general compound events, independent events, and mutually exclusive events. Use survey results to compute 	 Why study probability? What are the basic definitions and rules of probability? What are counting techniques, trees, permutations, and combinations?

		conditional probabilities	
11-13	Unit 4: Random Variables	 Distinguish between discrete and continuous random variables. Graph discrete probability distributions. List the defining features of a binomial experiment. Compute binomial probabilities using the formula. Use the binomial probability distribution to solve real-world problems. 	 What is a random variable and how do you compute it? How can you use the binomial probability distribution to compute the probability of <i>r</i> successes. How do you solve real-world problems using binomial probability distribution?
9-11	Unit 5: Normal Distributions	 Graph a normal curve and summarize its important properties. Apply the empirical rule to solve real-world problems. Graph the standard normal distribution, and find areas under the standard normal curve. Compute the probability of "standardized events". Use the inverse normal to solve guarantee problems. 	 What are the characteristics of a normal distribution? What does the empirical rule tell you about data spread about the mean? How do you convert any normal distribution to a standard distribution? How do sampling distributions help us make good decisions based on incomplete information? How can we use this information in the real world?

15-17	Unit 6: Statistical Inference	 Explain the meaning of confidence level, error of estimate, and critical value. Find the critical value corresponding to a given confidence level. Find critical values using degrees of freedom and Estimate <i>p</i>, in the binomial distribution. 	 How do you estimate the expected value of a random variable and how much confidence should be placed in such an estimate? How large of a sample size do you need at the beginning design stage of a statistical project? How do you estimate the proportion, <i>p</i>, of successes in a binomial experiment and how does the normal approximation fit into this process?
7-9	Unit 7: Inferences using Chi- Squared and Inferences related to Linear Regression	 Design a test to investigate independence of random variables. Use contingency tables to compute the sample x² statistic. Find and estimate the P-value of the sample x² statistic and complete the test. Conduct a test of homogeneity of populations. Set up a test to see how well a sample distribution fits a given distribution. 	 How do you decide if random variables are dependent or independent? How do you decide if different populations share the same proportions of specified characteristics? How do you test a correlation coefficient? How do you compute the standard error of estimate and how is it used? How do you compute

	 Use the x² distribution to estimate a P-value and conclude the test. 	confidence intervals for a least-squares prediction?
6-8 Unit 8: Inferences about Differences	 Identify paired data and dependent samples. Explain the advantages of paired data tests. Compute differences and the sample test statistic. Estimate the P-value and conclude the test. Identify independent samples and sampling distributions. 	 What are the statistical advantages of paired data values? How do you construct statistical tests? How do we compare means from two independent populations? How do we use sample data to compare proportions from two independent populations?