Probability and Statistics Scope \& Sequence

Days May Vary	Unit	Outcomes	Essential/Guiding Questions
14-16	Unit 1 : Foundations of Statistics	- Identify variables in a statistical study. - Distinguish between quantitative and qualitative variables. - Identify populations and studies. - Distinguish between parameters and statistics. - Compare descriptive and inferential statistics - Explain the importance of random samples as you design your own.	- What is the nature of data and why are statistics important? - What are the different sampling techniques? - How can you design ways to collect data?
11-13	Unit 2: Correlation and Regression	- Create a scatter diagram and estimate the location of the "best-fitting" line for a scatter diagram. - Use sample data to to compute	- How can you use a scatter diagram to visually estimate the degree of linear correlation of two random variables?

		the sample correlation coefficient t and investigate the meaning of it. Explain the difference between interpolation and extrapolation. Explain why the extrapolation beyond the sample data range might give results that are misleading or meaningless.	-

		conditional probabilities	
11-13	Unit 4: Random Variables	- Distinguish between discrete and continuous random variables. - Graph discrete probability distributions. - List the defining features of a binomial experiment. - Compute binomial probabilities using the formula. - Use the binomial probability distribution to solve real-world problems.	- What is a random variable and how do you compute it? - How can you use the binomial probability distribution to compute the probability of r successes. - How do you solve realworld problems using binomial probability distribution?
ו-וי	Unit 5: Normal Distributions	- Graph a normal curve and summarize its important properties. - Apply the empirical rule to solve real-world problems. - Graph the standard normal distribution, and find areas under the standard normal curve. - Compute the probability of "standardized events". - Use the inverse normal to solve guarantee problems.	- What are the characteristics of a normal distribution? What does the empirical rule tell you about data spread about the mean? - How do you convert any normal distribution to a standard distribution? - How do sampling distributions help us make good decisions based on incomplete information? - How can we use this information in the real world?

15-17	Unit 6: Statistical Inference	- Explain the meaning of confidence level, error of estimate, and critical value. - Find the critical value corresponding to a given confidence level. - Find critical values using degrees of freedom and - Estimate p, in the binomial distribution.	- How do you estimate the expected value of a random variable and how much confidence should be placed in such an estimate? - How large of a sample size do you need at the beginning design stage of a statistical project? - How do you estimate the proportion, p, of successes in a binomial experiment and how does the normal approximation fit into this process?
7-9	Unit 7: Inferences using ChiSquared and Inferences related to Linear Regression	- Design a test to investigate independence of random variables. - Use contingency tables to compute the sample x^{2} statistic. - Find and estimate the P-value of the sample x^{2} statistic and complete the test. - Conduct a test of homogeneity of populations. - Set up a test to see how well a sample distribution fits a given distribution.	- How do you decide if random variables are dependent or independent? - How do you decide if different populations share the same proportions of specified characteristics? - How do you test a correlation coefficient? - How do you compute the standard error of estimate and how is it used? - How do you compute

		- Use the x^{2} distribution to estimate a P-value and conclude the test.	confidence intervals for a least-squares prediction?
6-8	Unit 8: Inferences about Differences	- Identify paired data and dependent samples. - Explain the advantages of paired data tests. - Compute differences and the sample test statistic. - Estimate the P-value and conclude the test. - Identify independent samples and sampling distributions.	- What are the statistical advantages of paired data values? - How do you construct statistical tests? - How do we compare means from two independent populations? - How do we use sample data to compare proportions from two independent populations?

