Science Grade 3 Scope & Sequence

Time Frame	Unit	NGSS Standard(s)/Outcome(s)	Essential/Guiding Questions
Begin in Fall Lessons 1-4 Record Weather observation S throughout the year. Complete Lessons 5-9 after Spring Break.	Weather and Climate	 <u>3-ESS2-1</u> Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season. <u>3-ESS2-2</u> Obtain and combine information to describe climates in different regions of the world. <u>3-ESS3-1</u> Make a claim about the merit of a design solution that reduces the impacts of a weather-related hazard 	 What are the attributes of weather and how can they be measured? How can the data collected be represented? How can weather data be used to predict weather patterns for a particular region? Why are climates different in various regions and around the world? What are weather-related hazards, and how can they impact an area? How can effective natural hazard design solutions reduce the impact of weather-related disasters?
Any time following 1st unit	Forces and Interaction s	 3-P52-1 Plan and conduct an investigation to provide evidence of the effects of balanced and unbalanced forces on the motion of an object. 3-P52-2 Make observations and/or measurements of an object's motion to provide evidence that a pattern can be used to predict future motion. 3-P52-3 Ask questions to determine cause and effect relationships of electric or magnetic interactions between two objects not in contact with each other. 3-P52-4 Define a simple design problem that can be solved by applying scientific ideas about magnets. 	 How does an object stay at rest or move? How can the motion or direction of an object be changed? How are forces and motion connected? How do properties such as size, distance, strength, location, orientation, direct contact, and indirect contact influence motion? How do we use cause and effect to explain the relationship between forces and motion? How do we use patterns to observe, measure and predict future motion? How does a scientist collect data on motion?

Any time following 1st unit	Matter and Its Interaction s	 <u>5-PS1-3</u> Students will classify materials based on their properties. <u>5-PS1-1</u> Students will develop a model to describe matter is made of particles too small to be seen. <u>5-PS1-3</u> Students will follow the engineering design process in order to explore physical changes in matter. <u>5-PS1-4</u> Students will conduct an investigation and present findings to explain mixtures. 	 How do scientists and engineers work to help solve problems? How does knowing about the properties of matter help us determine which materials will help us solve a problem? How can you prove that a mixture of two or more substances can result in new substances? How can you prove that matter is made of particles that you cannot see?
Fall 1st Unit	Inheritance and Variation of Traits	 <u>3-LS1-1</u> Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death. <u>3-LS3-1</u> Analyze and interpret data to provide evidence that plants and animals have traits inherited from parents and that variation of these traits exists in a group of similar organisms. <u>3-LS3-2</u> Use evidence to support the explanation that traits can be influenced by the environment. <u>3-LS4-2</u> Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing. 	 Do organisms look the same all their lives? How does their appearance change over time? How long have various organisms been around? What other organisms can you suggest as examples that show changes as they grow? What is a life cycle? What is metamorphosis? How does the life cycle of animals compare to that of plants and insects? What might come during/after the adult stage of life? What kind of patterns do you see in insect, plant and animal life cycles? How do observations provide evidence to answer the question under investigation?