Honors Calculus and AP Calculus Scope & Sequence Honors Calculus and Calculus AB study Units 1–7 Calculus BC studies units 8–11

Days May Vary	Unit	Outcomes	Essential/Guiding Questions
7-10	Unit 1: Limits and Continuity	 Understand what Calculus is and how it compares with Precalculus. Understand that the tangent line problem and the area problem are basic to Calculus. Estimate a limit using a numerical and or a graphical approach. Evaluate a limit using a variety of strategies. Develop and use a strategy for finding limits. Analyze and use properties of continuity. Analyze, understand and use the Intermediate Value Theorem. Determine infinite limits from the left and the right. 	 How does Calculus comment to what you learned in Precalculus? How do you evaluate limits and why do you need to? What is the best way to develop a strategy for finding limits? What is the value of the Intermediate Value Theorem? How do you determine infinite limits?
7-10	Unit 2: The Derivative	 Determine the relationship between differentiability and 	 What is the relationship between differentiability

		 continuity. Determine the derivative of a function using a variety of rules. Use derivatives to find the rate of change. Analyze the derivative of a trigonometric function and a higher-order derivative of a function. Analyze and use the Chain Rule and the General Power Rules to find the derivatives of various functions. Distinguish between functions written in implicit form and explicit form. Analyze and use implicit differentiation to find the derivative of a function. Analyze and use related rates to solve real-world problems. 	 and continuity? How do you find the derivative of a function? How do you find the derivative of a trigonometric function and a higher-order derivative of a function? How do the Chain Rule and the General Power Rule differ? How do you distinguish between functions written in implicit form and those written in explicit form? How is implicit differentiation used to find the derivative of a function?
7-10	Unit 3: Applications of the Derivative	 Determine the extrema of an interval. Differentiate between Rolle's Theorem and the Mean Value Theorem. Distinguish between the intervals of functions that are increasing and decreasing. Apply the Second Derivative 	 How do you find the extrema of an interval? How do you determine if the interval of a function is increasing or decreasing? What is the relationship between the Second Derivative Test and concavity?

		 Test to find the extrema of a function. Determine finite and infinite limits at infinity. Analyze and sketch the graph of a function. Solve applied minimum and maximum problems. Estimate a propagated error using a differential Find and analyze the differential of a function using differentiation formulas. Apply L'Hopital's Rule to evaluate a limit. 	 How do you determine the finite and infinite limits at infinity? What are the applications of minimum and maximum problems? How do you estimate a propagated error? How do you evaluate a limit?
7-10	Unit 4: The Integral	 Determine the general solutions for a differential equation and use the indefinite integral notation for antiderivatives. Use sigma notation to write and evaluate a sum. Approximate the area of a plane region and determine the area using limits. Evaluate a definite integral using limits and using properties of definite integrals. Evaluate a definite integrals. 	 How do you determine solutions for a differential equation? When is it better to estimate the area of a plane region? How do you evaluate a definite integral? How do you evaluate an indefinite integral? How do you approximate a definite integral?

		 Theorem of Calculus. Explain the use of each: the Mean Value Theorem for Integrals, the Second Fundamental Theorem of Calculus and the Net Change Theorem. Examine the ways to find an indefinite integral. Analyze the approximate errors in the Trapezoidal Rule and the Simpson's Rule. 	
7-10	Unit 5: Logarithmic, Exponential, and Transcendental Functions	 Develop, use properties and find derivatives of functions of natural logarithmic function. Use and analyze the Log Rule for Integration to integrate a rational function. Verify that one function is the inverse of another. Determine whether a function has an inverse. Differentiate and integrate natural exponential functions. Define, differentiate and integrate that have bases other than <i>e</i>. Develop properties of and differentiate the six inverse 	 How are the properties of the natural logarithmic function used? How do you integrate a rational function? How do you verify the inverse of a function? How do you differentiate and integrate natural exponential functions? How are exponential functions used in the real world? How do you differentiate an inverse trigonometric function? How do you integrate

		trigonometric functions Integrate functions whose antiderivatives involve inverse trigonometric functions.	functions whose antiderivatives involve inverse trigonometric functions?
7-10	Unit 6: Differentiate Equations	 Analyze and use initial conditions, Euler's Method and slope fields to find particular and approximate solutions of differential equations. Solve exponential equations to model real-world situations. Analyze and use differential equations to model and solve real-world problems. Solve and analyze differential equations. 	 How do you find solutions to differential equations? What are ways to model exponential equations? What are ways to model differential equations?
7-10	Unit 7: Application of Integration	 Determine the area of two curves using integration. Determine the volume of a solid revolution using a variety of methods. Compare the methods for finding the volume of a solid revolution. Find the area of a surface of a revolution. 	 How can you find the area of two curves? What is the difference between finding the volume of a solid revolution and a solid with known cross sections? How are the shell method and the disc method different when finding the volume of a solid revolution?
15-20	Unit 8:	 Analyze and find an 	 How do you find an

	Techniques of Integration	 antiderivative using integrations by parts. Solve trigonometric integrals involving powers of sine, cosine, secant, tangent, and sine-cosine products with different angles. Explain the use of integrals in the real world. Analyze and use partial fraction decomposition with linear factors or quadratic factors to integrate rational functions. Evaluate an improper integral that has an infinite limit of integration and evaluate one that has an infinite discontinuity. 	 antiderivative? How do you solve trigonometric integrals? How are integrals used in the real world? How is partial fraction decomposition used to integrate rational function? How do you evaluate an improper integral?
20-25	Unit 9: Infinite Series	 Determine whether a sequence converges or diverges. Write a formula for the <i>n</i>th term of a sequence. Analyze and use the properties of infinite geometric series. Analyze and use the Integral Test to determine whether an infinite series converges or diverges. Analyze and use the Direct Comparison Test and the Limit 	 How do you know if a sequence converges or diverges? How do you know if a series converges or diverges? How do you classify a convergent series? After determining the polynomial approximations of elementary functions, how

		 Comparison Test to determine whether a series converges or diverges. Classify convergent series. Analyze and use the Ratio Test and the Root Test to determine whether a series converges or diverges. Determine the polynomial approximations of elementary functions and compare them with the elementary functions. Determine the radius and interval of convergence of a power series. Differentiate and integrate a power series. Construct a powers series using series operations. Determine how to find a binomial series. 	do you compare them with the elementary functions? • How do you integrate and differentiate a power series?
15-20	Unit 10: Parametric, Vector, and Polar Calculus	 Sketch the graph of a curve given by a set of parametric equations. Describe two calculus problems, the tautochrone and the brachistochrone. Find the area of a surface revolution and explain the process. 	 How do you differentiate between the two calculus problems, the tautochrone and the brachistochrone? How do you find velocity and acceleration vectors and the displacement and distance traveled using vectors?

		 Find velocity and accelerations vectors as well as the magnitude of vectors and explain the process. Find displacement and distance traveled using vectors and explain the process Analyze the polar coordinate system. Identify several types of polar graphs and explain their differences. Analyze and determine the area and arc lengths in polar coordinates. 	 How do you differentiate between the coordinate system and graphing and the polar coordinate system and graphing in it? How do you find the area and arc lengths in polar coordinates?
15-20	Unit 11: Additional Topics in BC Calculus	 Study and apply the formal definition of limit. Approximate a definite integral using Simpson's Rule. Interpret, create, and analyze differential equations using integration in order to solve real world logistic growth problems. Analyze the work done by a constant force and a variable force. Find the center of mass in a one-dimensional or two-dimensional system. 	 What are the applications of limit? What are the real-world applications of differential equations that use integration? How do you find the center of mass in one-dimensional or two-dimensional systems?